COURSE SHEET

Mathematical Modeling and Graph Theory
 Academic year 2022-2023

1. About the program

1.1	University	University of Piteşti
1.2	Faculty	Sciences, Physical Education and Computer Science
1.3	Department	Mathematics-Computer Science
1.4	Field of study	Informatics
1.5	Cycle of studies	Master
1.6	Study Program / Qualification	Advanced techniques for information processing/ Advanced techniques for information processing

2. Discipline data

2.1	Name of the discipline					Mathematical Modeling and Graph Theory					
2.2	The holder of	co	urse	activities		Asso	c. prof. PhD	âlcău			
2.3	Holder of laboratory activities					Assoc. prof. PhD Costel Bălcău					
2.4	Year of study	1	2.5	Semester	1	2.6	Type of assessment	E	2.7	Discipline regimen	0

3. Estimated total time

	Number of hours per week	4	3.2	of which course	2	3.3	laboratory	2
3.4	Total hours of the curriculum	56	3.5	of which course	28	3.6	laboratory	28
Distribution of the time fund								hours
Study by textbook, course support, bibliography and notes								56
Additional documentation in the library, on specialized electronic platforms and in the field								38
Preparation of seminars/ laboratories, themes, papers, portfolios, essays								40
Tutoring								6
Examination								4
Other activities.....								-
3.7	Total hours of self-study							
3.8	Total hours per semester							
3.9	Number of credits							

4. Preconditions (where applicable)

4.1	Curriculum	
4.2	Skills	Ability to analyze and synthesize, programming skills

5. Conditions (where applicable)

5.1	Conduct of the course	Room with video projector
5.2	Conducting the seminar/laboratory	Laboratory room with video projector and computer equipment

6. Acquired specific skills

	Development of theoretical concepts and practical methods regarding the process of development and maintenance of computer applications;
	Advanced information processing;
	Realization of it projects in an interdisciplinary context;
	Conceiving, designing and implementing information systems;
	Applying the rules of organize
	capitalization of one's own potential, respec
	Efficiently carrying out the activities organized in an interdisciplinary team by assuming execution and leadership functions, with the development of empathic capacities of inter-personal communication, networking and collaboration with various groups;
	Elaboration of own professional development project; the use of effective methods and techniques for learning, information, research and capacity development, for valuing knowledge, for adapting to the requirements of a dynamic society and for communicating in Romanian and English.

7. The objectives of the discipline

7.1 The general objective of the discipline	The acquisition by students of the basic knowledge, methods and techniques regarding the Mathematical Modeling, especially the Graph Theory, as well as the modalities of implementation and application to concrete situations.
	Cognitive objectives:
	- Knowledge of the studied models and their applicability.
	- Learning advanced notions and algorithms from graph theory.
7.2 Specific	Procedural objectives:
objectives	- Use test problems for the studied mathematical models.
	- Solve and implement problems from computer science modeled by graphs.
	- Use and implement the main models and algorithms in graph theory.
	- Highlights the applicability in other fields and in practical issues of the concepts and methods

	studied. Investigate the problems from various perspectives, transfer knowledge and skills from one field to another. Attitudinal objectives: Rigor in modeling, design and implementation of algorithms.

8. Contents

8.1. Course		Nr . hours	Teaching methods	Observations Resources used
1	Basic concepts of graph theory and linear programming: examples, algorithms and tests.	4	Explication Description and exemplification Demonstration Problematization Heuristic conversation Exercise	Blackboard Pen tablet Computer Video projector Documentary support E-learning platform Zoom
2	Mathematical modeling through graphs: examples.	2		
3	Steiner trees: properties, NP-completeness, algorithms and applications.	4		
4	Minimum weight spanning arborescences: algorithms and applications.	2		
5	Numerical invariants of graphs: the independence number, the matching number, the transversal number, the edge covering number and the clique number: properties, NP-completeness, algorithms and applications.	4		
6	Maximum matchings: mathematical models, the Berge-NormanRabin theorem, the Edmonds algorithm, perfect matchings and applications.	4		
7	Maximum network flows: mathematical models, computing the invariants for bipartite graphs, algoritthms and applications.	4		
8	Other models of mathematical programming: quadratic models, convex models, entropic models, examples, algorithms and tests.	4		

Bibliography

1. A.V. Aho, J.E. Hopcroft, J.D. Ullman, Data Structures and Algorithms, Addison-Wesley, Massachusetts, 2009.
2. Gh. Barbu, V. Păun, Programarea în limbajul C/C++, Ed. Matrix Rom, Bucureşti, 2011.
3. C. Bălcău, Combinatorică şi teoria grafurilor, Ed. Univ. din Piteşti, Piteşti, 2007.
4. C. Bălcău, Mathematical Modeling and Graph Theory - course notes (electronic support).
5. O. Bâscă, L. Livovschi, Algoritmi euristici, Ed. Univ. din Bucureşti, Bucureşti, 2003.
6. E. Ciurea, L. Ciupală, Algoritmi. Introducere în algoritmica fluxurilor în reţele, Ed. Matrix Rom, Bucureşti, 2006.
7. T.H. Cormen, Algorithms Unlocked, MIT Press, Cambridge, 2013.
8. T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein, Introduction to Algorithms, MIT Press, Cambridge, 2009.
9. C. Croitoru, Tehnici de bază în optimizarea combinatorie, Ed. Univ. AI. I. Cuza, Iaşi, 1992.
10. N. Dale, C. Weems, Programming and problem solving with JAVA, Jones \& Bartlett Publishers, Sudbury, 2008.
11. D. Du, X. Hu, Steiner Tree Problems in Computer Communication Networks, World Scientific, 2008.
12. S. Even, Graph Algorithms, Cambridge University Press, 2012.
13. D. Fanache, Teoria algoritmică a grafurilor, Editura Paralela 45, Pitesti, 2016.
14. S.C. Fang, J.R. Rajasekera, H.S.J. Tsao, Entropy Optimization and Mathematical Programming, Kluwer Academic Publishers, Boston, 1997.
15. F. Gebali, Algorithms and parallel computing, John Wiley \& Sons, New Jersey, 2011.
16. H. Georgescu, Tehnici de programare, Ed. Univ. din Bucureşti, Bucureşti, 2005.
17. S. Guiaşu, Probabilistic Models in Operations Research, Nova Science Publishers, 2009.
18. F.V. Jensen, T.D. Nielsen, Bayesian Networks and Decision Graphs, Springer, 2007.
19. D. Jungnickel, Graphs, Networks and Algorithms, Springer, 2013.
20. M. Keller, W. Trotter, Applied Combinatorics, Open Textbook Library, 2017.
21. D.E. Knuth, The Art Of Computer Programming. Vol. 4A: Combinatorial Algorithms, Addison-Wesley, Massachusetts, 2011.
22. B. Korte, J. Vygen, Combinatorial Optimization. Theory and Algorithms, Springer, 2012.
23. A. Levitin, Introduction to The Design and Analysis of Algorithms, Pearson, Boston, 2012.
24. L. Livovschi, H. Georgescu, Sinteza şi analiza algoritmilor, Ed. Ştiinţifică şi Enciclopedică, Bucureşti, 1986.
25. N. Matloff, Parallel computing for data science with examples in R, C++ and CUDA, CRC Press, London, 2015.
26. S. Miller, Mathematics of Optimization: How to do Things Faster, AMS, Providence, 2017.
27. C. Niculescu, Metode de optimizare pătratică, Ed. Univ. Bucureşti, București, 2006.
28. D.R. Popescu, Combinatorică şi teoria grafurilor, Soc. de Şt. Matem. din România, Bucureşti, 2005.
29. D.R. Popescu, R. Marinescu-Ghemeci, Combinatorică și teoria grafurilor prin exerciții și probleme, Ed. Matrix Rom, Bucureşti, 2014.
30. V. Preda, C. Bălcău, Entropy optimization with applications, Editura Academiei Române, Bucuresti, 2010
31. S.S. Ray, Graph Theory with Algorithms and its Applications, Springer, New Delhi, 2013.
32. R. Sedgewick, K. Wayne. Algorithms, Addison Wesley, Massachusetts, 2011.
33. R. Stephens, Essential Algorithms: A Practical Approach to Computer Algorithms, Wiley, Indianopolis, 2013.
34. T. Toadere, Grafe. Teorie, algoritmi şi aplicaţii, Ed. Albastră, Cluj-Napoca, 2002.
35. I. Tomescu, Combinatorică şi teoria grafurilor, Tipografia Univ. din Bucureşti, Bucureşti, 1978
36. I. Tomescu, Data structures, Ed. Univ. Bucureşti, Bucureşti, 1997 (2004).

	37. I. Tomescu, Probleme de combinatorică şi teoria grafurilor, Ed. Did. şi Ped., Bucureşti, 1981. 38. ${ }^{* * *}$, Handbook of combinatorics, edited by R.L. Graham, M. Grotschel and L. Lovasz, Elsevier, Amsterdam, 1995. 39. ***, Handbook of discrete and combinatorial mathematics, edited by K.H. Rosen, J.G. Michaels, J.L. Gross, J.W. Grossman and D.R. Shier, CRC Press, Boca Raton, 2000.					
8.2. Applications - Laboratory		Nr . hours		Observation Resources u		
	Basic concepts of graph theory and linear programming: examples, algorithms and tests.	4	Explication Description and exemplification Case study Exercise Problematization Individual themes Group work Debate	Blackboard Pen tablet Computer Video projector Documentary support E-learning platform Zoom		
	Steiner trees: properties, NP-completeness, algorithms and applications.	4				
	Minimum weight spanning arborescences: algorithms applications.	2				
5	Numerical invariants of graphs: the independence number, the matching number, the transversal number, the edge covering number and the clique number: properties, NP-completeness, algorithms and applications.	4				
6	Maximum matchings: mathematical models, the Berge-NormanRabin theorem, the Edmonds algorithm, perfect matchings and applications.	4				
7	Maximum network invariants for bipartite	4				
	Other models of mathematical programming: quadratic convex models, entropic models, examples, algorithms and	4				
Bibliography						
1. A.V.						
	2. Gh. Barbu, V. Păun, Programarea în limbajul C/C++, Ed. Matrix Rom, Bucureşti, 2011.					
4. C. Bălcău, Mathematical Modeling and Graph Theory - course notes (electronic support).						
5. O. Bâscă, L. Livovschi, Algoritmi euristici, Ed. Univ. din Bucureşti, Bucureşti, 2003						
	6. E. Ciurea, L. Ciupală, Algoritmi. Introducere în algoritmica fluxurilor în reţele, Ed. Matrix Rom, Bucureşti, 2006. 7. T.H. Cormen, Algorithms Unlocked, MIT Press, Cambridge, 2013.					
	8. T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein, Introduction to Algorithms, MIT Press, Cambridge, 2009.					
	9. C. Croitoru, Tehnici de bază în optimizarea combinatorie, Ed. Univ. Al. I. Cuza, Iaşi, 1992.					
10. N.						
	11. D. Du, X. Hu, Steiner Tree Problems in Computer Communication Networks, World Scientific, 2008.					
12. S. Even, Graph Algorithms, Cambridge University Press, 2012.						
13. D. Fanache, Teoria algoritmică a grafurilor, Editura Paralela 45, Pitești, 2016						
	14. S.C. Fang, J.R. Rajasekera, H.S.J. Tsao, Entropy Optimization and Mathematical Programming, Kluwer Academic Publishers, Boston, 1997.					
15. F. Gebali, Algorithms and parallel computing, John Wiley \& Sons, New Jersey, 2011.						
	16. H. Georgescu, Tehnici de programare, Ed. Univ. din Bucureşti, Bucureşti, 2005.					
17. S. Guiaşu, Probabilistic Models in Operations Research, Nova Science Publishers, 2009.						
18. F.V. Jensen, T.D. Nielsen, Bayesian Networks and Decision Graphs, Springer, 2007.						
19. D. Jungnickel, Graphs, Networks and Algorithms, Springer, 2013.						
20. M. Keller, W. Trotter, Applied Combinatorics, Open Textbook Library, 2017.						
	21. D.E. Knuth, The Art Of Computer Programming. Vol. 4A: Combinatorial Algorithms, Addison-Wesley, Massachusetts, 2011.					
22. B. Korte, J. Vygen, Combinatorial Optimization. Theory and Algorithms, Springer, 2012.						
	23. A. Levitin, Introduction to The Design and Analysis of Algorithms, Pearson, Boston, 2012.					
	24. L. Livovschi, H. Georgescu, Sinteza şi analiza algoritmilor, Ed. Ştiinţifică şi Enciclopedică, Bucureşti, 1986.					
	25. N. Matloff, Parallel computing for data science with examples in R, C++ and CUDA, CRC Press, London, 2015.					
	26. S. Miller, Mathematics of Optimization: How to do Things Faster, AMS, Providence, 2017.					
	27. C. Niculescu, Metode de optimizare pătratică, Ed. Univ. Bucureşti, Bucuresti, 2006.					
	28. D.R. Popescu, Combinatorică şi teoria grafurilor, Soc. de St. Matem. din România, Bucureşti, 2005.					
	29. D.R. Popescu, R. Marinescu-Ghemeci, Combinatorică și teoria grafurilor prin exerciții și probleme, Ed. Matrix Rom, Bucureşti, 2014.					
	30. V. Preda, C. Bălcău, Entropy optimization with applications, Editura Academiei Române, Bucuresti, 2010.					
	31. S.S. Ray, Graph Theory with Algorithms and its Applications, Springer, New Delhi, 2013.					
	32. R. Sedgewick, K. Wayne. Algorithms, Addison Wesley, Massachusetts, 2011.					
	33. R. Stephens, Essential Algorithms: A Practical Approach to Computer Algorithms, Wiley, Indianopolis, 2013.					
	34. T. Toadere, Grafe. Teorie, algoritmi şi aplicaţii, Ed. Albastră, Cluj-Napoca, 2002.					
	35. I. Tomescu, Combinatorică şi teoria grafurilor, Tipografia Univ. din Bucureşti, Bucureşti, 1978.					
	36. I. Tomescu, Data structures, Ed. Univ. Bucureşti, Bucureşti, 1997 (2004).					
	37. I. Tomescu, Probleme de combinatorică şi teoria grafurilor, Ed. Did. şi Ped., Bucureşti, 1981.					
	38. ***, Handbook of combinatorics, edited by R.L. Graham, M. Grotschel and L. Lovasz, Elsevier, Amsterdam, 1995.					

39. ${ }^{* * *}$, Handbook of discrete and combinatorial mathematics, edited by K.H. Rosen, J.G. Michaels, J.L. Gross J.W. Grossman and D.R. Shier, CRC Press, Boca Raton, 2000
40. Corroborating the contents of the discipline with the expectations of the representatives of the epistemic community, professional associations and employers in the field related to the program
The competences acquired within the discipline allow the graduates to efficiently use the models and techniques specific to mathematical modeling and graph theory in solving the requirements related to the practice and research in the field of informatics. The contents are correlated with those of similar disciplines in prestigious universities in the country and abroad (such as MIT) and adjusted after discussions with representatives of local IT employers (such as RoWeb, Lisa, Prodinf, Kepler, Osf, Endava).
41. Evaluation

Activity Type	10.1 Assessment criteria	10.2 Assessment methods	10.3 Percent of final grade
10.4 Course	Final evaluation	Written test (theory, algorithms and problems)	50%
10.5 Seminar/ Laboratory	Activity (solving proposed problems) Homework	Verification of solutions, practical test Homework check	30%
10.6 Minimum performance standard			
*Marks of at least 5 for the laboratory activity, for the homework and for the final evaluation (50\% solving the requirements); final grade at least 5. *Set of minimal knowledge for passing the final exam: - Knowledge of the main models and algorithms studied; - Knowledge of ways of adequate application and efficient implementation of these models and algorithms for solving the proposed problems.			

Date of completion
15.09.2022

Date of approval in the Departmen
15.09.2022

Course holder
Assoc. prof. PhD Costel Bălcău

Director Department (provider) Assoc.prof. PhD Doru CONSTANTIN

Laboratory holder Assoc. prof. PhD Costel Bălcău

Director Department (beneficiary)
Assoc.prof.PhD Doru CONSTANTIN

