COURSE SHEET

Mathematical Modeling and Graph Theory Academic year 2022-2023

1. About the program

1.1	University	University of Piteşti
1.2	Faculty	Sciences, Physical Education and Computer Science
1.3	Department	Mathematics-Computer Science
1.4	Field of study	Informatics
1.5	Cycle of studies	Master
1.6	Study Program / Qualification	Advanced techniques for information processing/ Advanced techniques for
		information processing

2. Discipline data

2	2.1	Name of the discipline				Math	nematical Modeling	and Graph	Theory			
2	2.2	.2 The holder of the course activities					Asso	Assoc. prof. PhD Costel Bălcău				
2	2.3	.3 Holder of laboratory activities					Assoc. prof. PhD Costel Bălcău					
2	2.4	Year of study	1	2.5	Semester	1	I / .n	Type of assessment	E	2.7	Discipline regimen	0

3. Estimated total time

5. Estimated total time							
3.1 Number of hours per week	4	3.2	of which course	2	3.3	laboratory	2
3.4 Total hours of the curriculum	56	3.5	of which course	28	3.6	laboratory	28
Distribution of the time fund							hours
Study by textbook, course support, biblic	ography a	and note	es				56
Additional documentation in the library, on specialized electronic platforms and in the field						38	
Preparation of seminars/ laboratories, themes, papers, portfolios, essays						40	
Tutoring						6	
Examination						4	
Other activities							-
·							

3.7	Total hours of self-study	144
3.8	Total hours per semester	200
3.9	Number of credits	8

4. Preconditions (where applicable)

4.1	Curriculum	
4.2	Skills	Ability to analyze and synthesize, programming skills

5. Conditions (where applicable)

5.1	Conduct of the course	Room with video projector
5.2	Conducting the seminar/laboratory	Laboratory room with video projector and computer equipment

6. Acquired specific skills

a		Operation with scientific concepts and methods in the field of information processing in information systems; Development of theoretical concepts and practical methods regarding the process of development and maintenance of computer
Professional	S	applications;
SSS	≅	Advanced information processing;
ofe	S	Realization of it projects in an interdisciplinary context;
P		Conceiving, designing and implementing information systems;
		Management of information systems.
	S	Applying the rules of organized and efficient work, of responsible attitudes towards the scientific-professional field, for the creative
gal	99	capitalization of one's own potential, respecting the principles and norms of professional ethics;
erg	eu	Efficiently carrying out the activities organized in an interdisciplinary team by assuming execution and leadership functions, with
SS	et	the development of empathic capacities of inter-personal communication, networking and collaboration with various groups;
ä	Ĕ	Elaboration of own professional development project; the use of effective methods and techniques for learning, information,
Transversal		research and capacity development, for valuing knowledge, for adapting to the requirements of a dynamic society and for
		communicating in Romanian and English.

7. The objectives of the discipline

7.1 The general	▶The acquisition by students of the basic knowledge, methods and techniques regarding the						
objective of the Mathematical Modeling, especially the Graph Theory, as well as the modalities of							
discipline	line implementation and application to concrete situations.						
	Cognitive objectives:						
	Knowledge of the studied models and their applicability.						
	Learning advanced notions and algorithms from graph theory.						
7.2 Specific	Procedural objectives:						
objectives Use test problems for the studied mathematical models.							
	Solve and implement problems from computer science modeled by graphs.						
	Use and implement the main models and algorithms in graph theory.						
	▶ Highlights the applicability in other fields and in practical issues of the concepts and methods						

studied.

Investigate the problems from various perspectives, transfer knowledge and skills from one field to another.

Attitudinal objectives:

Rigor in modeling, design and implementation of algorithms.

8. Contents

8.1	. Course	Nr. hours	Teaching methods	Observations Resources used
1	Basic concepts of graph theory and linear programming: examples, algorithms and tests.	4		
2	Mathematical modeling through graphs: examples.	2		
3	Steiner trees : properties, NP-completeness, algorithms and applications.	4		Blackboard
4	Minimum weight spanning arborescences : algorithms and applications.	2	Explication Description and	Pen tablet Computer
5	Numerical invariants of graphs: the independence number, the matching number, the transversal number, the edge covering number and the clique number: properties, NP-completeness, algorithms and applications.	4	exemplification Demonstration Problematization Heuristic	Video projector Documentary support
6	Maximum matchings : mathematical models, the Berge-Norman-Rabin theorem, the Edmonds algorithm, perfect matchings and applications.	4	conversation Exercise	E-learning platform Zoom
7	Maximum network flows : mathematical models, computing the invariants for bipartite graphs, algorithms and applications.	4		
8	Other models of mathematical programming: quadratic models, convex models, entropic models, examples, algorithms and tests.	4		

Bibliography

- 1. A.V. Aho, J.E. Hopcroft, J.D. Ullman, Data Structures and Algorithms, Addison-Wesley, Massachusetts, 2009.
- 2. Gh. Barbu, V. Păun, Programarea în limbajul C/C++, Ed. Matrix Rom, București, 2011.
- 3. C. Bălcău, Combinatorică și teoria grafurilor, Ed. Univ. din Pitești, Pitești, 2007.
- 4. C. Bălcău, Mathematical Modeling and Graph Theory course notes (electronic support).
- 5. O. Bâscă, L. Livovschi, Algoritmi euristici, Ed. Univ. din București, București, 2003.
- 6. E. Ciurea, L. Ciupală, Algoritmi. Introducere în algoritmica fluxurilor în rețele, Ed. Matrix Rom, București, 2006.
- 7. T.H. Cormen, Algorithms Unlocked, MIT Press, Cambridge, 2013.
- 8. T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein, Introduction to Algorithms, MIT Press, Cambridge, 2009.
- 9. C. Croitoru, Tehnici de bază în optimizarea combinatorie, Ed. Univ. Al. I. Cuza, Iași, 1992.
- N. Dale, C. Weems, Programming and problem solving with JAVA, Jones & Bartlett Publishers, Sudbury, 2008.
- 11. D. Du, X. Hu, Steiner Tree Problems in Computer Communication Networks, World Scientific, 2008.
- 12. S. Even, Graph Algorithms, Cambridge University Press, 2012.
- 13. D. Fanache, Teoria algoritmică a grafurilor, Editura Paralela 45, Pitești, 2016.
- 14. S.C. Fang, J.R. Rajasekera, H.S.J. Tsao, Entropy Optimization and Mathematical Programming, Kluwer Academic Publishers, Boston, 1997.
- 15. F. Gebali, Algorithms and parallel computing, John Wiley & Sons, New Jersey, 2011.
- 16. H. Georgescu, Tehnici de programare, Ed. Univ. din Bucureşti, Bucureşti, 2005.
- 17. S. Guiaşu, Probabilistic Models in Operations Research, Nova Science Publishers, 2009.
- 18. F.V. Jensen, T.D. Nielsen, Bayesian Networks and Decision Graphs, Springer, 2007.
- 19. D. Jungnickel, Graphs, Networks and Algorithms, Springer, 2013.
- 20. M. Keller, W. Trotter, Applied Combinatorics, Open Textbook Library, 2017.
- D.E. Knuth, The Art Of Computer Programming. Vol. 4A: Combinatorial Algorithms, Addison-Wesley, Massachusetts. 2011.
- 22. B. Korte, J. Vygen, Combinatorial Optimization. Theory and Algorithms, Springer, 2012.
- 23. A. Levitin, Introduction to The Design and Analysis of Algorithms, Pearson, Boston, 2012.
- 24. L. Livovschi, H. Georgescu, Sinteza și analiza algoritmilor, Ed. Științifică și Enciclopedică, București, 1986.
- 25. N. Matloff, Parallel computing for data science with examples in R, C++ and CUDA, CRC Press, London, 2015.
- 26. S. Miller, Mathematics of Optimization: How to do Things Faster, AMS, Providence, 2017.
- 27. C. Niculescu, Metode de optimizare pătratică, Ed. Univ. București, București, 2006.
- 28. D.R. Popescu, Combinatorică și teoria grafurilor, Soc. de Şt. Matem. din România, București, 2005.
- 29. D.R. Popescu, R. Marinescu-Ghemeci, Combinatorică și teoria grafurilor prin exerciții și probleme, Ed. Matrix Rom, București, 2014.
- 30. V. Preda, C. Bălcău, Entropy optimization with applications, Editura Academiei Române, București, 2010.
- 31. S.S. Ray, Graph Theory with Algorithms and its Applications, Springer, New Delhi, 2013.
- 32. R. Sedgewick, K. Wayne. Algorithms, Addison Wesley, Massachusetts, 2011.
- 33. R. Stephens, Essential Algorithms: A Practical Approach to Computer Algorithms, Wiley, Indianopolis, 2013.
- 34. T. Toadere, Grafe. Teorie, algoritmi și aplicații, Ed. Albastră, Cluj-Napoca, 2002.
- 35. I. Tomescu, Combinatorică și teoria grafurilor, Tipografia Univ. din București, București, 1978.
- 36. I. Tomescu, Data structures, Ed. Univ. București, București, 1997 (2004).

- 37. I. Tomescu, Probleme de combinatorică și teoria grafurilor, Ed. Did. și Ped., București, 1981.
- 38. ***, Handbook of combinatorics, edited by R.L. Graham, M. Grotschel and L. Lovasz, Elsevier, Amsterdam, 1995.
- 39. ***, Handbook of discrete and combinatorial mathematics, edited by K.H. Rosen, J.G. Michaels, J.L. Gross, J.W. Grossman and D.R. Shier, CRC Press, Boca Raton, 2000.

8.2	8.2. Applications – Laboratory		Teaching	Observations
0.2		hours	methods	Resources used
1	Basic concepts of graph theory and linear programming: examples, algorithms and tests.	4		
2	Mathematical modeling through graphs: examples.	2		
3	Steiner trees: properties, NP-completeness, algorithms and applications.	4	Explication	Blackboard
4	Minimum weight spanning arborescences : algorithms and applications.	2	Description and exemplification	Pen tablet Computer
5	Numerical invariants of graphs : the independence number, the matching number, the transversal number, the edge covering number and the clique number: properties, NP-completeness, algorithms and applications.	4	Case study Exercise Problematization Individual	Video projector Documentary support
6	Maximum matchings : mathematical models, the Berge-Norman-Rabin theorem, the Edmonds algorithm, perfect matchings and applications.	4	themes Group work Debate	E-learning platform Zoom
7	Maximum network flows : mathematical models, computing the invariants for bipartite graphs, algorithms and applications.	4		
8	Other models of mathematical programming: quadratic models, convex models, entropic models, examples, algorithms and tests.	4		

Bibliography

- 1. A.V. Aho, J.E. Hopcroft, J.D. Ullman, Data Structures and Algorithms, Addison-Wesley, Massachusetts, 2009.
- 2. Gh. Barbu, V. Păun, Programarea în limbajul C/C++, Ed. Matrix Rom, București, 2011.
- 3. C. Bălcău, Combinatorică și teoria grafurilor, Ed. Univ. din Pitești, Pitești, 2007.
- C. Bălcău, Mathematical Modeling and Graph Theory course notes (electronic support).
- 5. O. Bâscă, L. Livovschi, Algoritmi euristici, Ed. Univ. din București, București, 2003.
- 6. E. Ciurea, L. Ciupală, Algoritmi. Introducere în algoritmica fluxurilor în rețele, Ed. Matrix Rom, București, 2006.
- 7. T.H. Cormen, Algorithms Unlocked, MIT Press, Cambridge, 2013.
- 8. T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein, Introduction to Algorithms, MIT Press, Cambridge, 2009.
- 9. C. Croitoru, Tehnici de bază în optimizarea combinatorie, Ed. Univ. Al. I. Cuza, Iași, 1992.
- N. Dale, C. Weems, Programming and problem solving with JAVA, Jones & Bartlett Publishers, Sudbury, 2008.
- 11. D. Du, X. Hu, Steiner Tree Problems in Computer Communication Networks, World Scientific, 2008.
- 12. S. Even, Graph Algorithms, Cambridge University Press, 2012.
- 13. D. Fanache, Teoria algoritmică a grafurilor, Editura Paralela 45, Pitești, 2016.
- 14. S.C. Fang, J.R. Rajasekera, H.S.J. Tsao, Entropy Optimization and Mathematical Programming, Kluwer Academic Publishers, Boston, 1997.
- 15. F. Gebali, Algorithms and parallel computing, John Wiley & Sons, New Jersey, 2011.
- 16. H. Georgescu, Tehnici de programare, Ed. Univ. din Bucureşti, Bucureşti, 2005.
- 17. S. Guiașu, Probabilistic Models in Operations Research, Nova Science Publishers, 2009.
- 18. F.V. Jensen, T.D. Nielsen, Bayesian Networks and Decision Graphs, Springer, 2007.
- 19. D. Jungnickel, Graphs, Networks and Algorithms, Springer, 2013.
- 20. M. Keller, W. Trotter, Applied Combinatorics, Open Textbook Library, 2017.
- D.E. Knuth, The Art Of Computer Programming. Vol. 4A: Combinatorial Algorithms, Addison-Wesley, Massachusetts, 2011.
- 22. B. Korte, J. Vygen, Combinatorial Optimization. Theory and Algorithms, Springer, 2012.
- 23. A. Levitin, Introduction to The Design and Analysis of Algorithms, Pearson, Boston, 2012.
- 24. L. Livovschi, H. Georgescu, Sinteza și analiza algoritmilor, Ed. Științifică și Enciclopedică, București, 1986.
- 25. N. Matloff, Parallel computing for data science with examples in R, C++ and CUDA, CRC Press, London, 2015.
- 26. S. Miller, Mathematics of Optimization: How to do Things Faster, AMS, Providence, 2017.
- 27. C. Niculescu, Metode de optimizare pătratică, Ed. Univ. București, București, 2006.
- 28. D.R. Popescu, Combinatorică și teoria grafurilor, Soc. de Şt. Matem. din România, București, 2005.
- 29. D.R. Popescu, R. Marinescu-Ghemeci, Combinatorică și teoria grafurilor prin exerciții și probleme, Ed. Matrix Rom, București, 2014.
- 30. V. Preda, C. Bălcău, Entropy optimization with applications, Editura Academiei Române, București, 2010.
- 31. S.S. Ray, Graph Theory with Algorithms and its Applications, Springer, New Delhi, 2013.
- 32. R. Sedgewick, K. Wayne. Algorithms, Addison Wesley, Massachusetts, 2011.
- 33. R. Stephens, Essential Algorithms: A Practical Approach to Computer Algorithms, Wiley, Indianopolis, 2013.
- 34. T. Toadere, Grafe. Teorie, algoritmi și aplicații, Ed. Albastră, Cluj-Napoca, 2002.
- 35. I. Tomescu, Combinatorică și teoria grafurilor, Tipografia Univ. din București, București, 1978.
- 36. I. Tomescu, Data structures, Ed. Univ. Bucureşti, Bucureşti, 1997 (2004).
- 37. I. Tomescu, Probleme de combinatorică și teoria grafurilor, Ed. Did. și Ped., București, 1981.
- 38. ***, Handbook of combinatorics, edited by R.L. Graham, M. Grotschel and L. Lovasz, Elsevier, Amsterdam, 1995.

39. ***, Handbook of discrete and combinatorial mathematics, edited by K.H. Rosen, J.G. Michaels, J.L. Gross, J.W. Grossman and D.R. Shier, CRC Press, Boca Raton, 2000.

Corroborating the contents of the discipline with the expectations of the representatives of the epistemic community, professional associations and employers in the field related to the program

The competences acquired within the discipline allow the graduates to efficiently use the models and techniques specific to mathematical modeling and graph theory in solving the requirements related to the practice and research in the field of informatics. The contents are correlated with those of similar disciplines in prestigious universities in the country and abroad (such as MIT) and adjusted after discussions with representatives of local IT employers (such as RoWeb, Lisa, Prodinf, Kepler, Osf, Endava).

10. Evaluation

Activity Type		10.1 Assessment criteria	10.2 Assessment methods	10.3 Percent of final grade
10.4 Course Final evaluation			Written test (theory, algorithms and problems)	50%
10.5 Seminar/ Laboratory	Activity (so Homework	olving proposed problems)	Verification of solutions, practical test Homework check	30% 20%
10.6 Min performance		* Marks of at least 5 for the laboratory (50% solving the requirements); final gr * Set of minimal knowledge for passing - Knowledge of the main models and a - Knowledge of ways of adequate appliand algorithms for solving the proposed	ade at least 5. the final exam: lgorithms studied; cation and efficient implementa	

Date of completion 15.09.2022

Course holder Assoc. prof. PhD Costel Bălcău

Laboratory holder Assoc. prof. PhD Costel Bălcău

Date of approval in the Department Director Department (provider) 15.09.2022

Assoc.prof. PhD Doru CONSTANTIN

Director Department (beneficiary) Assoc.prof.PhD Doru CONSTANTIN

