COURSE SHEET

Software Engineering Academic year 2022-2023

1. About the program

1.1	University	Universitatea din Piteşti
1.2	Faculty	Sciences, Physical Education and Computer Science
1.3	Department	Mathematics-Computer Science
1.4	Field of study	Informatics
1.5	Cycle of studies	Master
1.6	Study Program / Qualification	Advanced techniques for information processing/ Advanced techniques for information processing

2. Discipline data

2.1	2.1 Name of the discipline					Software Engineering					
2.2	2.2 The holder of the course activities				Tud	or Bălănescu					
2.3	2.3 Holder of laboratory activities					Tud	or Bălănescu				
2.4	Year of study	1	2.5	Semester	1	2.6	Type of assessment	Е	2.7	Discipline regimen	0

3. Estimated total time

3.1 Number of hours per week	4	3.2	of which course	2	3.3	laboratory	2
3.4 Total hours of the curriculum	56	3.5	of which course	28	3.6	laboratory	28
Distribution of the time fund							hours
Study by textbook, course support, bibliography and notes							56
Additional documentation in the library, on specialized electronic platforms and in the field							38
Preparation of seminars/ laboratories, themes, papers, portfolios, essays							40
Tutoring							6
Examination							4
Other activities							-
0.7 Tatalla como ef a effectivale.							

3.7	Total hours of self-study	144
3.8	Total hours per semester	200
3.9	Number of credits	8

4. Preconditions (where applicable)

_		T. I reconditions (where a	applicable)
	4.1	Curriculum	-
	42	Skills	_

5. Conditions (where applicable)

	or contained (micro applicable)						
5.1	Conduct of the course	Room with video projector					
5.2	Conducting the seminar/laboratory	Room with video projector and computer equipment					

6. Acquired specific skills

Professional skills	Ability to specify software systems and user requirements. Skills to develop formal odels of software systems using languages and formalisms like UML, Z, Petri nets, state charts, FSMs, timed automata. Knowledge of theoretical procedures for automated verification of models and validation of implementations. Realization of projects
Transversal competences	Applying the rules of organized and efficient work, of responsible attitudes towards the scientific-professional field, for the creative capitalization of one's own potential, respecting the principles and norms of professional ethics; Efficiently carrying out the activities organized in an interdisciplinary team by assuming execution and leadership functions, with the development of empathic capacities of inter-personal communication, networking and collaboration with various groups; Elaboration of own professional development project; the use of effective methods and techniques for learning, information, research and capacity development, for valuing knowledge, for adapting to the requirements of a dynamic society and for communicating in Romanian and English.

7. The objectives of the discipline

7.1 The general objective of the discipline	▶The discipline has as general objective the acquisition by students of the basic knowledge for formal specification design, implementation, verification and validation of software systems.
7.2 Specific objectives	 Learning and mastering the basic concepts in the discipline of "software engineering" <i>Procedural objectives:</i> Development of a software development plan, going through all the phases from requirements development, system modeling, implementation and testing, use of software packages and products that support the above activities, especially UML language modeling, application steps above

Attitudinal objectives:

Rigor in the specification, design, implementation, verification and validation of software systems..

8. Contents

		Nr.		Observations
Ω 1	I. Course	ho	Teaching	Resources
0.1	. Course	urs	methods	used
	Introduction	uis		useu
	Professional software development			
1	Software engineering ethics	2		
	Case studies			
	Software Processes			
	Software process models			
2	Process activities	2		
_	Coping with change	_		
	The Rational Unified Process			
	Agile software development			
	Agile methods			
	Plan-driven and agile development			
3	Extreme programming	2		
	Agile project management			
	Scaling agile methods			
	Requirements engineering			
	Functional and non-functional requirements			
	The software requirements document			
	Requirements specification			
4	Requirements engineering processes	2		
	Requirements elicitation and analysis		lecture	
	Requirements validation		problematization	
	Requirements management		algorithms debate	
	System modeling		individual themes	
	Context models		group work	computer
	Interaction models		Explanation	projector
5	Structural models	6	Description and	
	Behavioral models		exemplification Demonstration	
	Model-driven engineering		Heuristic	
	Architectural design		Conversation	
	Architectural design decisions		Exercise	
6	Architectural views	4		
	Architectural patterns			
	Application architectures			
	Design and Implementation			
	Object-oriented design using the UML			
7	Design patterns	4		
	Implementation issues			
	Open source development			
	Software testing – 4 ore			
	Development testing			
0	Test-driven development	,		
8	Release testing	4		
	User testing			
	Unit, Integration, System testing			
	Other topics – 2 ore			
	Software Evolution			
9	Software Reuse	2		
	Distributed Software Engineering			
	Service-oriented Architecture			
D ::	· ·			

Bibliography

- lan Sommerville. Software Engineering 9th edition (2010) Addison-Wesley
- G. Booch, J. Rumbaugh, I. Jacobson. The Unified Language User Guide, Addison-Wesley, 1999. Aditya P. Mathur, Foundation of Software Engineering, Dorling Kindersley, 2008. 2.
- 3.
- 4.
- Paul Ammann, Jeff Offutt. Cambridge University Press, 2008.

 M. Fowler, K. Scott. UML Distilled: Applying the Standard Object Modeling Language, Addison-Wesley, 1997.

 F. Ipate. Modelare orientata pe objecte cu UML, Editura Universitatii Pitesti, 2001. 5.
- 6.
- 7. M. Roper. Software Testing, McGraw-Hill, 1994.
- M. Holcombe, F. Ipate. Correct Systems: Building a Business Process Solution, Springer Verlag, 1998.

Tudor Bălănescu, Horia Georgescu, Marian Gheorghe, Peter O'Donogue: "HOOD and Regular Expressions", Analele Universității București, Seria Matematică-Informatică, Special Issue, Proceedings of the Annual Meeting of the Faculty of Mathematics, 28-39 Nov. 1996, p. 45-60, 1997.

8.2	2. Applications – Seminar / Laboratory	Nr. hours	Teaching methods	Observations Resources used			
1	Software project that faithfully reflects the notions and stages of software development taught in the course • Examples for the notions taught in the course • Presentation of UML modeling tools (eg Magic Draw, ArgoUML)	4	Explanation Description and exemplification				
2	Specification of the requirements for use and development of a project, described in UML	4	Case study Exercise	Computers.			
3	Use charts, state charts, sequence charts	4	Problematization Individual	Software tools (IDEs)			
4	Example of a formal specification of a real time system	4	themes				
5	Formal specification of properties and model checking	4	Group work Debate				
6	Functional testing	4					
7	Structural testing	4					
	Dibliography						

Bibliography

- Ian Sommerville. Software Engineering 9th edition (2010) Addison-Wesley
- 2. F. Ipate. Modelare orientata pe obiecte cu UML, Editura Universitatii Pitesti, 2001.
- Aditya P. Mathur, Foundation of Software Engineering, Dorling Kindersley, 2008. 3.
- Paul Ammann, Jeff Offutt. Cambridge University Press, 2008.

Corroborating the contents of the discipline with the expectations of the representatives of the epistemic community, professional associations and employers in the field related to the program

The competences acquired within the discipline allow the graduates to efficiently use formal methodologies for design, implementation, verification and validation of software systems.

10. Evaluation

Activity Type		10.1 Assessment criteria	10.2 Assessment methods	10.3 Percent of final grade
10.4 Course Final evalua		tion	Practical test (algorithms and problems)	50%
10.5 Seminar/ Activity (so Laboratory Homework		ving proposed problems)	Verification of solutions, practical test Homework check	30% 20%
10.6 Min performance		* Marks of at least 5 for the laboratory activity the requirements); final grade at least 5. * Set of minimal knowledge for passing the fin - Knowledge of the main computational mod Knowledge of ways of adequate application ar proposed problems.	al exam: els studied;	, J

Date of completion 23.09.2022

Course holder Tudor Balanescu Laboratory holder Tudor Balanescu

Date of approval in the Department Director Department (provider) Conf.univ.dr. Doru CONSTANTIN Director Department (beneficiary)) Conf.univ.dr. Doru CONSTANTIN