

F1-REG-71-03

/ 3 1

COURSE SHEET
Software Engineering

Academic year 2023-2024
1. About the program

1.1 University Universitatea din Piteşti

1.2 Faculty Sciences, Physical Education and Computer Science
1.3 Department Mathematics-Computer Science

1.4 Field of study Informatics

1.5 Cycle of studies Master

1.6 Study Program / Qualification Advanced techniques for information processing/ Advanced techniques for
information processing

2. Discipline data

2.1 Name of the discipline Software Engineering

2.2 The holder of the course activities Tudor Bălănescu

2.3 Holder of laboratory activities Tudor Bălănescu

2.4 Year of study 1 2.5 Semester 1 2.6
Type of
assessment

E 2.7 Discipline regimen O

3. Estimated total time

3.1 Number of hours per week 4 3.2 of which course 2 3.3 laboratory 2

3.4 Total hours of the curriculum 56 3.5 of which course 28 3.6 laboratory 28

Distribution of the time fund hours

Study by textbook, course support, bibliography and notes 56

Additional documentation in the library, on specialized electronic platforms and in the field 38

Preparation of seminars/ laboratories, themes, papers, portfolios, essays 40

Tutoring 6

Examination 4

Other activities..... -

3.7 Total hours of self-study 144

3.8 Total hours per semester 200

3.9 Number of credits 8

4. Preconditions (where applicable)

4.1 Curriculum -

4.2 Skills -

5. Conditions (where applicable)

5.1 Conduct of the course Room with video projector

5.2 Conducting the seminar/laboratory Room with video projector and computer equipment

6. Acquired specific skills

P
ro

fe
s
s
io

n
a
l

s
k
ill

s

Ability to specify software systems and user requirements.
Skills to develop formal odels of software systems using languages and formalisms like UML, Z, Petri nets, state charts, FSMs,
timed automata.
Knowledge of theoretical procedures for automated verification of models and validation of implementations .
Realization of projects..

T
ra

n
s
v
e
rs

a
l

 c
o
m

p
e
te

n
c
e
s
 Applying the rules of organized and efficient work, of responsible attitudes towards the scientific-professional field, for the creative

capitalization of one's own potential, respecting the principles and norms of professional ethics;
Efficiently carrying out the activities organized in an interdisciplinary team by assuming execution and leadership functions, with
the development of empathic capacities of inter-personal communication, networking and collaboration with various groups;
Elaboration of own professional development project; the use of effective methods and techniques for learning, information,
research and capacity development, for valuing knowledge, for adapting to the requirements of a dynamic society and for
communicating in Romanian and English.

7. The objectives of the discipline

7.1 The general
objective of the
discipline

 The discipline has as general objective the acquisition by students of the basic knowledge for
formal specification design, implementation, verification and validation of software systems.

7.2 Specific
objectives

Cognitive objectives:synchronous, asynchronous, or partially synchronous

 . Learning and mastering the basic concepts in the discipline of "software engineering"..
Procedural objectives:

 Development of a software development plan, going through all the phases from requirements
development, system modeling, implementation and testing, use of software packages and
products that support the above activities, especially UML language modeling, application steps
above

F1-REG-71-03

/ 3 2

Attitudinal objectives:
 Rigor in the specification, design, implementation, verification and validation of software

systems..

8. Contents

8.1. Course
Nr.
ho
urs

Teaching
methods

Observations
Resources

used

1

Introduction

• Professional software development

• Software engineering ethics
Case studies

2

lecture
problematization

algorithms
debate

individual themes
group work
Explanation

Description and
exemplification
Demonstration

Heuristic
Conversation

Exercise

computer
projector

2

Software Processes

• Software process models

• Process activities

• Coping with change
The Rational Unified Process

2

3

Agile software development

• Agile methods

• Plan-driven and agile development

• Extreme programming

• Agile project management
Scaling agile methods

2

4

Requirements engineering

• Functional and non-functional requirements

• The software requirements document

• Requirements specification

• Requirements engineering processes

• Requirements elicitation and analysis

• Requirements validation

• Requirements management

2

5

System modeling

• Context models

• Interaction models

• Structural models

• Behavioral models

• Model-driven engineering

6

6

Architectural design

• Architectural design decisions

• Architectural views

• Architectural patterns

• Application architectures

4

7

Design and Implementation

• Object-oriented design using the UML

• Design patterns

• Implementation issues

• Open source development

4

8

Software testing – 4 ore

• Development testing

• Test-driven development

• Release testing

• User testing

• Unit, Integration, System testing

4

9

Other topics – 2 ore

• Software Evolution

• Software Reuse

• Distributed Software Engineering

• Service-oriented Architecture

2

Bibliography
1. Ian Sommerville. Software Engineering – 9th edition (2010) - Addison-Wesley
2. G. Booch, J. Rumbaugh, I. Jacobson. The Unified Language User Guide, Addison-Wesley, 1999.
3. Aditya P. Mathur, Foundation of Software Engineering, Dorling Kindersley, 2008.
4. Paul Ammann, Jeff Offutt. Cambridge University Press, 2008.
5. M. Fowler, K. Scott. UML Distilled: Applying the Standard Object Modeling Language, Addison-Wesley, 1997.
6. F. Ipate. Modelare orientata pe obiecte cu UML, Editura Universitatii Pitesti, 2001.
7. M. Roper. Software Testing, McGraw-Hill, 1994.
8. M. Holcombe, F. Ipate. Correct Systems: Building a Business Process Solution, Springer Verlag, 1998.

F1-REG-71-03

/ 3 3

9. Tudor Bălănescu, Horia Georgescu, Marian Gheorghe, Peter O'Donogue: "HOOD and Regular Expressions",
Analele Universităţii Bucureşti, Seria Matematică-Informatică, Special Issue, Proceedings of the Annual
Meeting of the Faculty of Mathematics, 28-39 Nov. 1996, p. 45-60, 1997.

8.2. Applications – Seminar / Laboratory
Nr.

hours
Teaching
methods

Observations
Resources

used

1

Software project that faithfully reflects the notions and stages of
software development taught in the course
• Examples for the notions taught in the course
• Presentation of UML modeling tools (eg Magic Draw, ArgoUML)

4
Explanation

Description and
exemplification

Case study
Exercise

Problematization
Individual
themes

Group work
Debate

Computers.
Software

tools (IDEs)

2
Specification of the requirements for use and development of a
project, described in UML

4

3
Use charts, state charts, sequence charts

4

4 Example of a formal specification of a real time system 4

5
Formal specification of properties and model checking

4

6
Functional testing

4

7 Structural testing 4

Bibliography
1. Ian Sommerville. Software Engineering – 9th edition (2010) - Addison-Wesley
2. F. Ipate. Modelare orientata pe obiecte cu UML, Editura Universitatii Pitesti, 2001.
3. Aditya P. Mathur, Foundation of Software Engineering, Dorling Kindersley, 2008.
4. Paul Ammann, Jeff Offutt. Cambridge University Press, 2008.

9. Corroborating the contents of the discipline with the expectations of the representatives of the
epistemic community, professional associations and employers in the field related to the program

The competences acquired within the discipline allow the graduates to efficiently use formal methodologies for design,
implementation, verification and validation of software systems.

10. Evaluation

Activity Type 10.1 Assessment criteria 10.2 Assessment methods
10.3 Percent of final

grade

10.4 Course

Final evaluation

Practical test (algorithms and
problems)

50%

10.5 Seminar/
Laboratory

Activity (solving proposed problems)
Homework

Verification of solutions,
practical test
Homework check

30%
20%

10.6 Minimum
performance standard

* Marks of at least 5 for the laboratory activity, for the homework and for the final evaluation (50% solving
the requirements); final grade at least 5.
* Set of minimal knowledge for passing the final exam:
- Knowledge of the main computational models studied;
Knowledge of ways of adequate application and efficient implementation of these models in solving the
proposed problems.

Date of completion Course holder Laboratory holder
19.09.2023 Prof.univ.dr Tudor Balanescu Prof.univ.dr Tudor Balanescu

Date of approval in the Department Director Department (provider) Director Department (beneficiary))
 19.09.2023 Conf.univ.dr. Doru CONSTANTIN Conf.univ.dr. Doru CONSTANTIN

