COURSE SHEET

Machine Learning Academic year 2023-2024

1. About the program

1.1	University	University of Piteşti
1.2	Faculty	Sciences, Physical Education and Computer Science
1.3	Department	Mathematics-Computer Science
1.4	Field of study	Informatics
1.5	Cycle of studies	Master
1.6	Study Program / Qualification	Advanced techniques for information processing/ Advanced techniques for
		information processing

2. Discipline data

2.1	Name of the discipline			Мас	hine Learning						
2.2	The holder of the course activities			Lect	Lect. PhD. Maria MIROIU						
2.3	Holder of laboratory activities			Lect	. PhD. Maria MIRO	IU					
2.4	Year of study	2	2.5	Semester	2	I / n	Type of assessment	Exam	2.7	Discipline regimen	Α

3. Estimated total time

3.1 Number of hours per week	2	3.2	of which course	1	3.3	laboratory	1
3.4 Total hours of the curriculum	24	3.5	of which course	12	3.6	laboratory	12
Distribution of the time fund						hours	
Study by textbook, course support, biblic	ography a	and note	es				24
Additional documentation in the library, on specialized electronic platforms and in the field 3							38
Preparation of seminars/ laboratories, themes, papers, portfolios, essays							28
Tutoring						12	
Examination							12
Other activities: projects and homework evaluation							12
07 7 11 6 16 1			00				

3.7	Total hours of self-study	126
3.8	Total hours per semester	150
3.9	Number of credits	6

4. Preconditions (where applicable)

4.1	Curriculum	Probability and statistics, mathematical analysis, algebra
4.2	Skills	Acquaried competences at the following subjects: Computational Intelligence, Pattern Recognition, Probability and mathematical statistics, Mathematical analysis, Algebra, Programming in Matlab, Python, Java, C# and C++.

5. Conditions (where applicable)

	5.1	Conduct of the course	Room with video projector
ĺ	5.2	Conducting the seminar/laboratory	Laboratory room with video projector and computer equipment

6. Acquired specific skills

Professional skills	Operation with scientific concepts and methods in the field of information processing in information systems; Development of theoretical concepts and practical methods regarding the process of development and maintenance of computer applications; Advanced information processing; Realization of it projects in an interdisciplinary context; Conceiving, designing and implementing information systems; Management of information systems.
Transversal	Applying the rules of organized and efficient work, of responsible attitudes towards the scientific-professional field, for the creative capitalization of one's own potential, respecting the principles and norms of professional ethics; Efficiently carrying out the activities organized in an interdisciplinary team by assuming execution and leadership functions, with the development of empathic capacities of inter-personal communication, networking and collaboration with various groups; Elaboration of own professional development project; the use of effective methods and techniques for learning, information, research and capacity development, for valuing knowledge, for adapting to the requirements of a dynamic society and for communicating in Romanian and English.

7. The objectives of the discipline

	1				
7.1 The general	The acquisition by students of the basic knowledge, methods and techniques from the Machine				
objective of the Learning, as well as the modalities of implementation and application to concrete situati					
discipline	methods and techniques.				
	Cognitive objectives:				
	Knowing the methods of parametric, non-parametrical, Bayesian statistical estimation.				
7.2 Specific	Knowing regression and classification methods.				
objectives	Understanding the design of the linear classifiers.				
	Knowing SVMs.				
	Knowing the and applying the HMMs.				

Procedural objectives:

Appropriate use of the specific concepts and methods.

Identifying and implementing the concrete situation of applying the specific methods and techniques.

Attitudinal objectives:

Showing interest and curiosity.

Demonstrating rigurosity in knowing, applying, and implementating the specific methods and techniques.

8. Contents

8.1. Course		No. of	Teaching methods	Observations
0.1	U.I. OULISE		reaching methods	Resources used
1	Unidimensional and Multidimensional Linear Regression	1	Explanation	
2	Logistic Regression	1	Description and	Blackboard
3	Parametric Estimation (ML)	2	exemplification	Pen tablet
4	Nonparametric Estimation (Parzen, kNN)	2	Demonstration	Computer
5	Bayesian Estimation	2	Problematization	Video projector
6	Support Vector Machines	2	Heuristic	E-learning platform
7	HMMs, Baum-Welch and Viterbi Algorithms	4	conversation Exercise	Zoom

Bibliography

- 1. Note de curs si laborator (2020) electronic support Maria Miroiu.
- Taeho Jo, Machine Learning Foundation: Supervised, unsupervised, and Advanced Learning, Springer Publisher, 2021.
- Cucker, F., Zhou, D.X., Learning Theory. An Approximation Theory Viewpoint, Cambridge University Press, 2007.
- 4. Bishop, C.M., Pattern Recognition and Machine Learning, Springer, 2006.
- 5. Shigeo, A., Support Vector Machines for Pattern Classification, Springer, 2010.
- 6. Marsland, S., Machine Learning. An Algorithmic Perspective, CRC Press, 2009.
- 7. Alpaydin, E., Introduction to Machine Learning, MIT Prerss, 2010.
- 8. Barber, D., Bayesian Reasoning and Machine Learning, CRC Press, 2011.
- 9. Wang, L.(ed), Support Vector Machines: Theory and Applications, Springer, 2005.
- 10. Friedman, J., Hastie, T., Tibshirani, R., The Elements of Statistical Learning, Springer, 2008.
- 11. Cappe, O., Moulines, E., Ryden, T., Inference in Hidden Markov Models, Sporinger, 2007.

8.2	. Applications – Laboratory	No. of hours	Teaching methods	Observations Resources used
1	Applications and Implementation for Unidimensional and Multidimensional Linear Regression, and Logistic Regression	2	Explanation	Blackboard
2	Applications and Implementations for Parametric Estimation	3	Description and exemplification	Pen tablet Computer
3	Applications and Implementation for Bayesian Estimation	3	Case study Exercise Problematization	Video projector Documentary
4	Implementation for SMO Algorithm for Linear Separable Data	3	Individual themes Group work	support E-learning platform
5	Implementations for Baum-Welch și Viterbi Algorithms	3	Debate	Zoom

Bibliography

- 1. Note de curs și laborator (2020) suport electronic Maria Miroiu
- Taeho, J., Machine Learning Foundation: Supervised, unsupervised, and Advanced Learning, Springer Publisher 2021
- 3. Bishop, C.M., Pattern Recognition and Machine Learning, Springer, 2006.
- 4. Shigeo, A., Support Vector Machines for Pattern Classification, Springer, 2010.
- 5. Marsland, S., Machine Learning. An Algorithmic Perspective, CRC Press, 2009.
- 6. Herbrich, R., Learning Kernel Classifier. Theory and Algorithms, MIT Press, 2002.
- 9. Corroborating the contents of the discipline with the expectations of the representatives of the epistemic community, professional associations and employers in the field related to the program

The content of the subject is correlated with those of similar disciplines in prestigious universities in the country and abroad and adjusted after discussions with representatives of local IT employers (such as Crystal System, Renault Group, Endava, Roweb, Draexlmaier, Prodinf, Osf Digital, Alten Kepler, Vauban).

10. Evaluation

Activity Type	e 10.1 Assessment criteria		10.2 Assessment methods	10.3 Percent of final grade
10.4 Course	10.4 Course Final evaluation		Written final test	50%
10.5 Seminar/	10.5 Seminar/ Laboratory Projects implementation Homework		Projects evaluation	30%
			Knowledge evaluation based on homework solving	20%
10.6 Min performance			t 5 for the final evaluation and at least 5 for the project lge for passing the final exam: linear regression, parar ttion, SVM.	

Date of completion: Course holder: Laboratory holder: 19.09.2023 Lect. PhD. Maria MIROIU Lect. PhD. Maria MIROIU

Date of approval in the Department: Director Department (provider):

19.09.2023 Director Department (beneficiary):

Assoc.prof. PhD Doru CONSTANTIN

Assoc.prof.PhD Doru CONSTANTIN